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Abstract~Design sensitivity equations for coupled thermoviscoelastic systems are discretized via
the finite element method. The approach is developed for structural systems by using the total
Lagrangian approach and the reference domain concept. The discretization is based on implicit
integration schemes. The implementation of finite element and design sensitivity analysis utilizes
the Christensen-Naghdi free energy function and the direct differentiation approach, which is most
suitable for the systems under consideration. A relationship between the discretized sensitivity
equations and the equations for the original analysis is shown. Use of the same discretization for
analysis and sensitivity analysis is emphasized. Partial derivatives of the right-hand side required
for sensitivity calculations are implemented via the central difference method. which provides greater
flexibility without sacrificing accuracy. Examples of analysis and design sensitivity analysis for a
thermoviscoelastic non-linear truss and a plate with a hole are given. The calculated sensitivity
results are verified by comparison with overall finite difference calculations.

I. INTRODlICT[()!\

Finite element (FE) analysis in engineering applications has advanced recently and includes
such an important area for engineering applications as analysis of thermoviscoelastic
structures. Examples of such structural systems may be systems composed of polymeric
materials, whose hysteretic and viscoelastic properties necessitate coupled thermo
viscoelastic analysis to capture some important aspects of their behavior. Since, typically,
engineering analysis is geared toward design improvement (or optimization), design sen
sitivity analysis (DSA) of such structures should be performed to expedite this process.

A number of papers have been published recently on DSA of thermoelastic and
thermoviscoplastic structures by Meric (l986a,b. 1987. 1988, 1990), Oems (1987), Oems
and Mroz (1987), Hou et al. (1990). Tortorelli el al. (1991 a. b), and Lee et al. (1991, 1993).
An approach for DSA of thermoviscoelastic structural systems was also recently developed
by Poldneff and Arora (1993). In the present study, we discretize the equations that were
developed by Poldneff and Arora (1993) via the FE method and implement the approach
by using a specific thermoviscoelastic material model described by the free energy function
proposed by Christensen and Naghdi (1967). For this particular material model, a computer
code for thermoviscoelastic FE analysis DSA, which is based on a direct differentiation
method and implicit integration procedures, is developed. Numerical examples demonstrate
the development.

Numerical integration procedures that are used in dynamic analysis are generally
subdivided into two large groups: explicit and implicit. Procedurally, the major difference
is that it is not necessary to solve a system of non-linear algebraic equations for explicit
methods in order to calculate primary quantities such as displacements or temperatures
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and to advance to the next time step. whereas a system of non-linear algebraic equations
has to be solved in the case of implicit methods to obtain the primary quantities and to go
to the next time step. Such a system of non-linear equations is usually solved by the
iterative Newton-Raphson method. This difference in the procedure for implicit and explicit
methods dictates a difference in DSA. Since no equations are solved in the explicit time
integration schemes, no advantage is gained. as far as the CPU time is concerned, by the
development and implementation of special procedures for DSA: overall finite difference
is just as fast. Such a development and implementation, however, may be desirable from
the convenience standpoint. On the other hand, in the case of the implicit integration, it is
definitely advantageous to develop and implement a DSA procedure that is tied closely to
the analysis. In this case. DSA is very economical. since typically only one backsubstitution
using the current tangent stiffness matrix (from the Newton-Raphson method for analysis)
is required for sensitivity calculations once convergence is achieved. With some constitutive
models. it is more appropriate and efficient to use an iterative procedure to solve the
sensitivity equation even though it is linear (Jao and Arora. 1992). In the current develop
ment, we focus on DSA that is based on an FE analysis with an implicit integration.

= FIELD FQlATlO1\S

As in our previous work (Poldndf and Arora. 1993). we consider a solid deformable
body subjected to external forces and heat sources. The system of equations describing its
behavior consists of equations for balance of momentum, conservation of energy, consti
tutive functionals. and compatibility. together with appropriate boundary and initial con
ditions, which we consider in the undeformed configuration. We discretize the equations
by using FEM and later examine their relation to the DSA equations.

We first write the momentum and energy equations in a weak form and then subdivide
the domain occupied by the system into FE. We approximate spatial co-ordinates, dis
placements. and temperature by using the the shape functions N 4 • which are defined in the
standard element according to the isoparametric FE concept. Subscript A refers to the
element node in the sense that lv' j has unit value at the node A and zero at the rest of the
element nodes. We then obtain the discretized versions of the equations of motion and
energy:

//I'H((' + I J::, .d'iu'id;'.\'H:/dD = GHi
,Il

~ I' Jrh(T/-T'):\,Slidr+ r J,R[(NJID4-(N,TA/]NHdf
~ I .," I !-i

(1)

+LJprNBdD+LJwNBdD (2)

where the mass matrix ml/l and the right-hand side GHI are given by the foHowing
expressions:

//I'Ji = I fiN ,NliJ dD
..,f)
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A semicolon in all the above equations denotes partial differentiation with respect to
the co-ordinates in the reference configuration. The quantities used in eqns (I) and (2) are
as follows: U, are the components of displacement. J is the Jacobian determinant of the
transformation from the reference to the undeformed configuration, 2h 22' 23 are the co
ordinates of a point in the deformed configuration. d" are the elements of the J- I matrix,
(]ij are the components of the second Piola-Kirchoff stress tensor, D is the reference domain,
p is the mass density in the undeformed configuration, IJ is the specific entropy, q, are the
components of heat flux, i r is the Jacobian determinant of the mapping of the boundary
in the reference domain onto the boundary in the undeformed configuration, ij is the
prescribed heat flux, h is the convective coefficient, T is the absolute temperature, Tr is
the fluid temperature, R is the radiation coefficient. TR is the temperature of the radiative
source, r is the heat supply per unit mass, 5, are the components of surface traction, Fj are
the components of body force, and w is the internal dissipation; it is used as by Poldneff
and Arora (1993). We note that integrals in eqns (I) and (2) are over the reference domain
or its boundary. For the isoparametric elements, the reference domain is the standard
element that is mapped into a real element. It is therefore clear that the reference volume
approach is very well suited to FE implementation.

To complete the discretization, we consider the constitutive equations in the discretized
form. The constitutive functionals are written as follows:

(J,; = =:" (1;.,. T)
r~1)

,
IJ = e (f;", T)

,-=0

,
qj = Q, (U;III.f'I' T.gd

r~O

,
w = Q (£". T)

T~ I)

(3)

(4)

(5)

(6)

where a comma denotes partial differentiation with respect to the co-ordinates in the
undeformed configuration. f" are the components of the Green-Lagrange strain tensor,
and 9, are the temperature gradients.

We next subdivide the time interval into a collection of subintervals of duration M n

and define discrete moments in time tIl' tIl = t" .. I + !J.t" with to = O. Since eqns (3)-(6) depend
on the whole history of the variables. at the time moment tno the dependence will be on the
variables at all the time moments prior to and including tIl' that is we can rewrite the discrete
equivalent of the constitutive equations as:

T". T 1
•••• , Tn) (7)

(8)

(9)

.... <;':1' rt'. T 1

••••• Tn) (10)

superscript in the above equations specifies the point in time.
By using specific constitutive laws and numerical schemes for time discretization, eqns

(7)-(10) are readily obtained from eqns (3)-(6). In order to write algebraic equations
amenable to computer implementation. we shall perform temporal discretization with the
Newmark scheme for displacements and the Crank-Nicholson scheme for temperatures. All
the following conclusions. however, remain valid for any implicit temporal discretization.
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J, q'" I N 13dr" + I lrh(T/'" I - r 'n + ')N ~NHdr
• I ,

Applying the temporal discretization to the weak form of the equations of motion and
energy, we obtain:

(11 )

...• I:',',' I • 1''', 1'1 . . . T" . I ) T I" . I

I J ( ". I- tli ·u i:1I1 •

~/J

l
+ I' J 1 R[(NJ,!'" I).j -(NJ''',).j]NHdr+J~ Jpr"~INHdD

~rR I)

+ I J(')(C~~.I;,I! ..... t:','" 1'''. T ' ..... T")/vHdD
./J

(12)

where P ,H is related to the constitutive equation for entropy.
Equations (II) and (12) are non-linear algebraic equations with respect to the current

values of displacements and temperatures, but they depend on all the past values of
displacements and temperature. In order to start the process, we use the initial values
of displacements. velocities, and temperatures. The initial values for accelerations and
temperature rates are calculated by using the prescribed initial conditions in eqns (11) and
(12). The solution of the derived equations is obtained iteratively by using the Newton
Raphson method, which is widely used for the solution of systems of simultaneous non
linear equations and is a popular tool in the non-linear FE technology. We take partial
derivatives of equations with respect to the unknowns to find the expressions for the tangent
stiffness matrix for the Newton-Raphson method. Differentiating eqns (11) and (12) with
respect to the nodal unknown displacements u;" ]and temperatures TDn + r, we obtain:

)
',.. : /1- I ~ /I + 1

111 1111" ,. _I,'.' I II (~k) __ ~E'I'__ lf ...,\: .'iD---- + J ,; I I C en. I " H.,'
(/jL1l)c • /J -,, ( U,

• DGI/+ I

I
Jf 1/. 'd '\' dD ,_13_'_ - E U

--..;.-.. ( \jUk/ lk.J 8-1 - . - BiC')'.
./J . DU;n+I

I
, '- - c ". I \eif, , ( I], ( 1:,1' •

1 (-_.-.- d'I/,!''' C:, + --, ----,-,-) dlk IV HI dD
CU· '"'."-1-1 -. (1)-1

..,IJ 1·111 (l:,p (IIy

(13)

(14)

Dr.//' I CQ
-""--:v dD - __13_ = L U_. • 13 . BC,

eu;//'] DU;,,+I
(15)
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~ I~. JlhNsNndr-I" .II R4Ni,(To",I)'NB dr = L~D (16)
• I • I "

Quantities E~il~' E~iIJ' L~( rand L10 are parts of the tangent stiffness matrix; E, C, and D
are node numbers; i and 'Y. are degrees of freedom; and superscripts u and T denote the
variable used in the partial differentiation: either displacement or temperature. It is clear
that E~1C' is responsible for the mechanical part. L10 is responsible for the thermal part.
and E1iO and L~c" are responsible for the coupling between the mechanical and thermal
parts.

The tangent stiffness matrix K is used in the Newton Raphson iterations to solve the
following systems of linear simultaneous equations:

K~s:' .. =0 R (17)

where j is the iteration number, \ is the unknown vector combining nodal displacements
and temperatures, and R' is the residual.

When eqns (17) are solved, the solution vector .1:,+ I is updated s/,~ \ = s/,_ I + ~s/,+ I.

and the residual is checked against the specified tolerance. If the tolerance is not met.
iterations go on. If the tolerance is met. time is incremented, and iterations begin at the
next point in time.

.1. DIRECT DIIFEREt\TlATION METHOD

To discretize the DDM equations obtained by Poldneff and Arora (1993), we follow
the same FE procedure as in the previous section. Then, using the same finite element shape
functions. we obtain discretized sensitivity equations analogous to the discretized equations
of motion and energy:

m ABbii;4 + [f JN4:,d,/h/1Ik NHI dDl. ()U, + I' J::,JI,J<~:."",(ckm,,)NR.ld/k dD
D ~/)

+ r J::",d,J<~JT(bT)NB.ldlk dD = HRi
.n

(LPJNjIjNRdD})T'+ LPJTK;-j, ,(I)i:,,)NRdD+ LPJTK~T(bT)NBdD

- r J[D .. , .6: 1511"1' + KQ'f" (&Im) + KQ"".(I)q",) + KQ1(bT)l. dkiNB:k dD
&>{) , II

~ r J(I)(flm1j", + (fl", 1)1 I", - p[K'j', (15;;,/) + Kn (() T) + (K(-),,(&,/)
&If)

where 15 denotes design variation and

HH' =0 r5(i H,-'()lIll/lii,4- r ()h(J::"d,j(fk,dldNs/dD
oj/)

with bh being partial variation with respect to the design parameter b. Linear hereditary
functionals ~,,,,,,, ~JT' etc.. are defined by Poldneff and Arora (1993) and are obtained by
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taking Frechet differentials of the non-linear constitutive functionals. In this particular
notation. the first subscript denotes the constitutive functional that is differentiated, the
second superscript denotes the variable in Frechet differentiation; superscripts represent
the functional that is differentiated; a prime means that the functional is differentiated with
respect to time.

Applying the same time discretization as in the previous section, i.e. Newmark and
Crank-Nicholson schemes, we arrive at the following discretized equations for sensitivities
inOOM:

[
i5u

An
+ I i5u,4" i5u

4
" (I - 2f3)' i5u

A
"J (f . )

I I I I Jd n+ I d N dD ~ An+ I
!nAB ----:;- - -----;- - f3A - - 2f3 + 'I(fk/ Ik BJ uUi

f3(At)- f3(At)c ilt D

[" - J [, ., -{I JCqi, . (0) CE,p C{J- j J--;::.h- df,l'V H./dD oh- I J.- ~.'NBdD i5ux
(' - Ii - (Ii

[) _ ~ /) (f.rp CU':i

[
~ l'w J [ I' Dw J- I J---- N BNIJ dD bTIJI> - J -::;-h N BdD i5h

" n /'; TIJII
" IJ C

+ [I' J[hNBN D drlbT4n+ I -t- [I' J1 R4NjATD
n+!)3 NBdrJi5TA

n+!

'" rfl . II r R

~ "

= -I C)(Jp)lY4 f1T 4 NH dD+ I bJwNBdD
"'}) ~l)

+() I' JrqNBdf,/+ I' JrhT/NANBdr+ r JrR(N4T~)4NBdr
,I" ,r JrR

+f JprNBdD)+ I' q,c)(Jd"lNB , dD
f) •.iF>

(19)

The superscript f3 in eqns (18) and (19) has a range of values from 0 to n + 1, which thus
accounts for the history of deformations.

Comparing eqns (18) and (19) with eqns (13) (16), we can conclude that, for solution
of the sensitivity problem by using DOM. a system oflinear equations that has the following
structure has to be solved:

(i) the matrix of the system coincides with the tangent stiffness matrix of the analysis
problem for the same time step as when the solution has converged;

(ii) the right-hand side F of the sensitivity system is related to the residual vector R of
the analysis problem with a converged solution in the following manner:
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(20)

Superscript (/ in eqn (20) takes values from 0 to n, so the summation for this
superscript is over the past history excluding the current time tn + I'

We note that both Rand F have to be generally recalculated from one time increment
to the next. However, for some particular cases (linear thermoviscoelasticity, for example),
they can be calculated just by adding extra terms to the values from the previous time step.

The DDM can be implemented along with the response analysis: as soon as the
analysis problem has converged at a certain time step. the right-hand side for the sensitivity
problem can be formed. and the sensitivity analysis solution can be obtained by making
use of the current tangent stiffness matrix. The solution process can then march on in time
along with the sensitivity analysis. Since the sensitivity results are correct only for the exact
solution of the non-linear algebraic equations. the tolerance on the convergence has to be
fairly tight for good accuracy. It may be seen that the right-hand side of the sensitivity
equations is obtained by partial differentiation of the residual vector with respect to the
design parameter, b. and by carrying along the past history sensitivities. The sensitivities
therefore depend not only on the history of displacements and temperature but also on the
history of displacement and temperature sensitivities.

-+ II'vIPLE\lE\iT\T10N

4.1 Constituticc EqUilliol1.\
We consider constitutive equations proposed by Christensen and Naghdi (1967). They

were discussed in detail by Poldneff and Arora (1993). For isotropic materials, the equations
for stresses and entropy take the form:

( T) .~! (! T( T)
, dT - X()" I 3K(I- T)·~-.- dT
( T .• 11 CT

(21 )

" (r)" i'I( r)
pS = -x I 3K(I-T) -, dr+- p ' m(l-r) ,·---dr

",' II (T '" I) ( r
(22)

where G, i., and K are kernels similar to the Lame constants and bulk modulus in elasticity;
r:J. is the coefficient of thermal expansion: m is a kernel similar to the specific heat quantity
in heat transfer; p is the mass density: D,; are the strain components; and T denotes
temperature change with respect to initial temperature To.

For computer implementation. we assume that every kernel r in eqns (21) and (22)
can be represented by a sum of exponents with a certain amplitude A! and relaxation time
vi, that is:

\ .
f(l) = Ai, + I A~ exp (

,····1
(23)

where superscript f denotes the kernel for which a constant is used.
As was shown by Poldneff and Arora (1993). in order to satisfy the Second Law, the

constitutive equations relating the heat flux and the temperature gradients have to be taken
in the classical Fourier law form:

(24)

where Kif are thermal conductivities.
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4.2 Specific discretizatiol1
To arrive at the special form of FE equations, first consider infinitesimal displacements

Uk; that is the strain~displacementrelations assume the form

We substitute the strain-displacement relations and constitutive eqns (21), (22) and (24)
into a weak form of momentum and entropy eqns (l), (2). Performing the required
operations, we obtain, similarly to Oden (1972), the following discretized differential equa
tions of motion and energy:

mABa;; + UBiA, f' G(t - T)llk\r) dT + hR'lI. I'" i.(t - r)u,4 (T) dT
() ~ II

1'1

+CBiA J K(t-T)tA(T)d, = GBi
o

(25)

(26)

where EB is the right hand side of eqn (2), and matrices UB,A" bBiA" CBiA, dBA,JBA" gBA' and
gBA are expressed in terms of shape functions as follows:

US, I' = I . .INsid/:«(),Jv b +r5"NA:sd,) dD. /'

hR';' = I I'V s !dl,N 1 JI,k dD
..ill

Cfi,' = I .IN/I ,d"X, dD
./J

dH4k = 3'l.K"T" r .IS,.,d,k N B dD
.. /l

lfilk = Ill" 1'" I flJN I,vR dD
... n

hSI = T" I pJN,N 8 dD
\-,f)

}'SI = I ./h".V"d,!NIi/dl, dD .
... /J

We also consider plane trusses undergoing infinitesimal strains, but which could experience
finite displacements. Considering the infinitesimal strain condition and the fact that there
is only one stress component that is normal to the cross-section and constant along the
truss element axis. the equations take the form:

fJ1lfiii~ +(-I)liucos<D = GBI

fJ1jf;ii~ + (~ 1)8 (T sin <D = G82

(27)
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where (J is the normal stress in the truss element and <t> is the angle of the truss element with
respect to the x I-axis in the deformed configurations. which is calculated in terms of nodal
co-ordinates and displacements as follows:

XI + IIIcos <t> = -----
l.

X,+U,
sin <t> = - 

L

where L is the element length. F is the element cross-sectional area, and [; is the element
strain expressed in terms of nodal displacements as follows:

'! 'I [(' I)' (' 1)2]Ui-II; , U;-U'. ' I Ui-U 1 - Ui-U"l,
B =-.-- cos ¢ + Sill ¢ + '1 ,. + ..,.-- ..

L L _ L L
(28)

¢ being the truss element angle with respect to the .Y t -axis in the undeformed configuration.
Despite the linearity of the constitutive equations. eqns (27) and (28) constitute a system
of non-linear equations because the strain·-displacement relations, eqn (28), are non-linear
and the motion equations are written in the deformed configurations.

4.3 Time integration
For temporal discretization of the mechanical part. we use the Newmark method

(unconditionally stable for linear mechanical systems):

Ii'" t

'1

-. (u"+ I _II") ~Ii"

,A,t

Expressing displacements and velocities in terms of accelerations, we obtain:

,A,t'
= II" + ,A,tli" + (Ii" -+- fi" + 1 )

4

M
Ii'" 1= li"+ (fi"+ll"· I),

2

(29)

(30)

It may be seen from eqns (29) and (30) that in every time interval (t", t,,+ 1) displacements
are approximated quadratically, and velocities are approximated linearly in time. Keeping
this in mind, we discretize a typical integral of velocities in eqns (25) and (26). We subdivide
the time interval (0, t) into subintervals, which we use in Newmark approximations, and
use the representation ofeqn (23) for the kernel. A typical hereditary integral then becomes:

it , \ / t )' "1'k+1 (r)f(t-r)li(r)dr = A~)[II(t". t )-II(O)]+L A~ exp ( - ",;-1 ,~, exp -:r u(r) dr.
o I . 1 \ \ i f.:. - (I '" II

Approximating Ii linearly in every time interval (t,. tk , 1) and performing closed-form
integration, we obtain:
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r' r(t-r)u(r)dr = AL(u,,+1 -uo)
Jo

\ (I .\ "+ 2.: A~ exp - ";~) 2.: (Dr'u' + Ff'uk +cf'uk
+ I)

Il\', (c' n

where Dr', Fri. cr' are obtained through calculations of integrals such as

(31)

exp (' r ")dr
\'1 I

and given by the following expressions:

and ('I, I (r )l exp l'i rdr

Two terms. Af,u", 1 and

in eqn (31) contribute to the current stiffness matrix, whereas all others contribute to the
right-hand side. We note that the right-hand side for the current time step is calculated by
adding terms to the right-hand side of the previous time increment, which thus results in
more efficient computations and storage,

The same time integration procedure was used for non-linear truss elements. In that
case, Newton-Raphson iterations were used at every time step because of non-linearity.
However. because the constitutive law is still linear, that is additive, the same kind of
procedure is used for the right-hand side accumulation.

For time integration of the thermal part we use the Crank-Nicholson method, which
provides unconditional stability for thermal problems:

-,
= ~ (T" - I - T") - T"

!'H

Expressing temperatures in terms of temperature rates, we obtain:

Tn'l (32)

We can infer from eqn (32) that temperature is approximated linearly in every time
interval (tn. tn+ I)' Considering this for calculations of typical hereditary integrals of tem
perature. we obtain:
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where H[i is obtained through calculations of integrals such as

i'k I (T)exp r dT
(~ VI

and is calculated as follows:

587

Again, as in the previous section, a conclusion can be drawn that only terms A~T"+ I,

and

N (t)L Ai exp -~.] Hr'T"+]
i= 1 v;

contribute to the current stiffness matrix, that all others contribute only to the right-hand
side, and that the right-hand side for the current step is calculated by adding terms to the
right-hand side of the previous time increment.

4.4 Procedures of analysis and sensitivity analysis
Accounting for eqns (31) and (32), the discretized equations of momentum and energy

can be written as :

_ d ( 2U
tn . A) /. f1dKdliAk (2 T~ T'A) h hdm/dl E B

- BAK M+Ukn -. BAk, n +gBA M+ n - BA n + n+l

(33)

(34)

where superscripts e. I" K, dK/dt. and dmjdt denote kernels used in the calculations and
f~, g~+ 1, h~. and p~+] are given by the following expressions for any kernel r:

v (t) nf~=r~]Aiexp - :r] k~o(Dr'll+Fri~+e[,-]~)

r I' N r (tn + ]) rr
gn+] = Ao + L A, exp - -.- e"

i= 1 v;

h~ = £Ai exp (- tn~]) f (H[' ] - H[')Tk

,=] v, k=()
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p,l, • 1 - I ~ 1 > (_ t",_,-) [',- All +L... A t:xp . H"., ' I'i

Equations (33) and (34) contain the unknowns, the current displacements u~n+ 1, and
temperatures TIn + I. which are premultiplied by partitions of the current stiffness matrix
on the left-hand side. and the whole history of displacements and temperatures on the right
hand side.

Similarly. the DSA equations are obtained:

df'" elh~'f> ." . "
- HlI, elf> - (HI~ df> (35)

III",

,(2g~~ +/ dllidl +. )( lit IBAPn+ 1 KBA

~ . TA,,+ 1

ah
'/ I')' " - - (')T~ )-/I(B.I~(_II'" ",) liB" 'Id~dlllk CgBA~_~~ 'A elBA dlli!d,+ -h A + 1/,,, - - L t" + -h - A + Tn - -b hn

I • Dot . II! C Dot 0

(36)

Comparing eqns (33). (34) and (35). (36) one can see that the current stiffness matrices
are the same for both analysis and DSA. It is also clear that the right-hand sides of both
analysis and DSA are incremented from one time increment to the next. It is further
observed that the right-hand side of the sensitivity equations depends on the whole history
of sensitivities of displacements. velocities, and accelerations as well as displacements,
velocities, and accelerations themselves. Hence. for sensitivity calculations, a DSA similar
to the original FE analysis has to be carried along in every time step. An FE code based on
the elements described above and capable of both analysis and DSA based on the above
equations was developed. Partial derivatives, present on the right-hand side of the sensitivity



Design sensItivIty analysis in dynamic thcrmO\iscoelasllCity 589
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Fig. I. Truss structure

equations, were implemented via central differences. that is by utilizing the semi-analytical
method. The central difference method provides ease and generality in coding, yet over
comes certain intrinsic inaccuracies of the semi-analytical method if forward differences are
used. The errors in the semi-analytical method were first reported by Barthelemy and
Haftka (1988), and then the rigid motion test was developed by Cheng and Olhoff (1993),
in whose paper many other references on the subject can be found. Examples of its
application are given in the next section. Analysis and DSA for non-linear trusses follow a
similar route, but the current tangent stiffness matrix is used instead of the stiffness matrix.

5. NLMERICAL EXAMPLES

5.1 Non-linear truss
For verification of sensitivity analysis for trusses with large displacements, a model of

truss shown in Fig. I was assembled. Material properties of the truss were assumed to be
those of aluminum at elevated temperature and taken from Tauchert (1967). All units are
in the SI system. The properties have the following values: A~ = 2.65x 1010,
A? = 2.34 x 10 10

. r(i = 0.88, A~ = 6.89 X 10'11. A~ = 0.0. A;;' = 1100.00, AT = 0.0,
p = n02.00,'Y. = 1.30 x 10 " K = 225.00. The initial temperature is taken as To = 733.00
on the absolute scale. The external force P is harmonic as P = A sin I with the amplitude
A = 20,000.00. The cross-sectional area F. length of bars L. and spring rate S were taken
as follows: F = 6.45 x 10-", L = 0.40. 5,' = 5.00. Owing to the symmetry of the structure,
only the left half of it with appropriate boundary conditions was analyzed. Figures 2 and
3 present histories of the midpoint displacement and temperature.
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Fig. 3. Temperature history.

The same problem was modeled by using the IMSL Runge-Kutta subroutine for
verification. Comparison of displacements and temperature at randomly selected times is
presented in Tables I and 2.

It is clear from Tables I and 2 that there is a good agreement between the calculated
response and one obtained by using the Runge-Kutta subroutine, which verifies the
developed code.

Sensitivities of the calculated response with respect to the coefficient of thermal expan
sion were calculated and compared with the ones obtained by using the finite difference
approach. Comparison of displacement sensitivities for several time instants is given in
Table 3, and comparison of temperature sensitivities is given in Table 4.

Sensitivities calculated by using the developed approach and those obtained by finite
differences practically coincide, and hence all differences in Tables 3 and 4 are zeros verifying
the approach.

Table I. Displacement comparison

Time (s)

0.12252
0.46024
0.83409
1.3006
1.9871

Computed
displacement

(m)

- 0.49828£ - I
-077979£-\
- 0.86345£ - 1
-0.93659£- J

-0.10044

Displacement by
Runge-Kutta

(m)

-0.49827£-1
-0.77985£-1
-0.86381£-1
-0.93590£-1
-0.10052

% Difference

0.002
0.008
0.042
0.074
0.080

Table 2. Temperature comparison

Time (s)

0.12252
0.46024
0.83409
1.3006
1.9871

Computed
temperature

(K)

-0.15588£-2
-0.38177£-2
-0.46807£-2
-0.55073£ - 2
- 0.63338£ - 2

Temperature by
Runge-Kutta

(K)

-0.15587£-2
-038182£-2
-0.46847£-2
-0.54992£-2
-0.63437£-2

% Difference

0.006
0.013
0.085
0.147
0.156
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Time (s)

0.36128£-2
0.1\623£-1
0.40840£ - I
0.87179£-1
0.\4938

Calculated sensitivity

o88220E
Oln30
0176871:-1

Ol4757ET I
(26)541:+ I

Finite difference

0.88220£-1
017J30
-0.17687£ I
0.14757£+1
026354£+ I

% Difference

0.0
0.0
0.0
0.0
0.0

Table 4. Comparison of temperature sensitivity for truss

Time (s)

0.36\28£ - 2
0.\1623£-1
0.40840£ - I
0.87179£-1
0.14938

Calculated sensitivity

- 0.28797 E+)
0.32545£+3
OIJIJ7E+4

-0.19178F+4
-0.265031: .. 4

Finite difference

0.28797£+3
1132545E+ 3
0.13137£+4
O.19178E+4
02650.\£+4

% Difference

0.0
0.0
0.0
0.0
0.0

5.2 2D Shape sensitiril.J' ana/nil
The program developed was used to analyze a 20 plane-strain problem. The structure

under consideration is given in Fig. 4. It is a square plate with a hole in the center loaded
with a uniformly distributed pressure P along the edges. The pressure varies harmonically
with time as P = A sin I. with the amplitude A = 15. The material properties of aluminum
at the elevated temperature of 733 K, the same as in the case of the truss analysis of the
previous section, are assumed here. A temperature equal to the initial temperature was
prescribed along the edges of the hole. The outer edges of the plate carrying the load were
insulated. Owing to the symmetry of the structure, only a quarter of it with the appropriate
boundary conditions was analyzed; its FE mesh with node numbers is shown in Fig. 5. The
time increment was taken as IT/20, and analysis was carried out for 30 time steps. In this
way, the structure goes through both tension and compression, since the external load
changes its sign. The deformed plots of the structure after 10 and 30 time increments are
shown in Figs 6 and 7, respectively, where the displacements are exaggerated in order to
visualize the deformed configuration.

Shape sensitivity analysis with respect to the length of the center hole or the hole
dimension in the X direction was performed by using the code developed. Both displacement
and temperature sensitivities were calculated at every time step. Sensitivities were also

y

X

4

p

12

Fig. 4. Stluare plate \\ith central hole under uniform pressure.
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Time
step Node

10 18
10 18
10 49
10 49
10 53
10 53
30 18
30 18
30 49
30 49
30 53
30 53

Degreesof
freedom

2

2

2

Calculated sensitivity

0.12514£-2
- 0.92703£ - 2
058339£-3
0.10569£-3

-099835£-4
0293501:'- 2

-0 12064£- 2
0.83881£-2
056606£ -2
O.93544E-- 3
0.67500£-4
026571 E- 2

Finlle difference

0.12513£-2
-0.92680£-2

0.58306£-3
-0.10560£-3
-0.99999£-4

0.29340£-2
-012060£-2

083880£-2
056600£-2
093600£-3
067558£·-4
026560£ - 2

% Difference

0.01
0.02
0.06
0.09
0.05
0.03
0.03
0.0
0.01
0.06
0.09
0.04

Table 6. Shape sensllivlty analysis' companson of temperature sensitivities

Time
step :-.lode Calculated sensitivity Finlle dilference % Difference

10 18 O.14420E 2 014420£-2 0.0
10 49 031992£ o 32000E-3 0.03
10 5) 0.46890£ 3 0470001:'·· 0.23
30 18 1114891£ , o 14900£- 2 0.06
30 49 O.31499E O.31400E- 3 0.32
30 53 . 0449'iOf-. 11448001:'-< 0.33

calculated by employing finite differences. The tinite difference sensitivity results were used
for comparison and verification of the approach developed and the code. Comparison of
the finite difference sensitivities and those calculated by using the code developed is given
in Tables 5 and 6. Table 5 presents comparison of displacement sensitivities and Table 6
presents comparison of the temperature sensitivities. Examination of the tables indicates
that agreement between the calculated and finite difference sensitivities is quite good, which
thus provides verification for the approach developed

6. SLM\1ARY .\'\0 (OMLLSIONS

The equations of motion as well as the sensitivity equations for the direct differentiation
method were transformed into a weak form and discretized by using the finite element
method in the displacement form. In the temporal domain. the Newmark numerical scheme
was used for discretization of the momentum equations. whereas the Crank-Nicholson
scheme is used for discretization of the energy conservation equation. After the discret
ization, it was observed that. in the direct differentiation method. the discretized equations
use the current tangent stiffness matrix. Lse of the same discretization for both analysis
and sensitivity analysis is emphasized. An FE code capable of analysis and DSA of 1D and
2D thermoviscoelastic problems was developed on the basis of the Christensen-Naghdi
free energy function and the direct differentiation approach. A semi-analytical, central
difference method was used in the implementation. The sensitivity results were verified via
an overall central difference method.

The adjoint sensitivity equations derived by Poldneff and Arora (1993) can also be
discretized by using the same procedures as described here for the direct differentiation
method. The adjoint discretized sensitivity equations use the transpose of the current
tangent stiffness matrix. Furthermore. the adjoint problem is a terminal value problem,
which complicates its numerical implementation.

On the basis of the present study. the following conclusions can be drawn.

I. Sensitivity analysis of thermoviscoelastic structural systems is feasible and can be
incorporated into a finite element computer code for dynamic response.



'94 M. J Poldneff and J. S. Arora

Very good accuracy in DSA of thermoviscoelastic structural systems can be
achieved.

3. The direct differentiation method is better suited for computer implementation of
thermoviscoelastic systems as compared with the adjoint variable method because
it is an initial value problem and can march in time together with the original
analysis problem. The adjoint variable method results in a terminal value problem,
and the sensitivity analysis can therefore be performed only after the analysis is
completed.

4. Implementation of DSA depends on the thermoviscoelastic constitutive law and its
implementation since the sensitivity distribution depends on the whole history of
response and sensitivities.

Ackllimledqemelll---The authors are grateful to The Goodyear Tire & Rubber Company for support and per
mission to publish their results.
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